(BV, L2) Multiscale Hierarchical Decomposition: Modes and Rates of Convergence

نویسندگان

  • Ming-Jun Lai
  • Leopold Matamba Messi
چکیده

Tadmor, Nezzar and Vese [Eitan Tadmor, Suzanne Nezzar, and Luminita Vese. A multiscale image representation using hierarchical (BV, L2) decompositions. Multiscale Model. Simul., 2(4):554–579, 2004.] developed a total variation based multiscale method for decomposing a function f ∈ BV into a countable set of features {uk : k = 0, 1, 2 . . .} associated to a sequence of dyadic scales {λk = λ02−k : k = 0, 1, 2, . . .} such that for each k, [uk+1, vk+1] = arg min{λk|Du| + ‖v‖L2 : u + v = f }. They showed that f = ∑∞ k=0 uk in L 2(Ω) and strongly in W−1,∞(Ω). In this paper, we study the convergence of the series ∞ ∑ k=0 uk in the weak*, strict and normed topologies of the space of functions with bounded variation. We show that in general, the convergence of the series f = ∞ ∑ k=0 uk in any of the three topologies of BV is conditioned by its rate of convergence in L2, and prove that the convergence in L2 is geometric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiscale Image Representation Using Hierarchical (BV, L2 ) Decompositions

We propose a new multiscale image decomposition which offers a hierarchical, adaptive representation for the different features in general images. The starting point is a variational decomposition of an image, f = u0 + v0, where [u0, v0] is the minimizer of a J-functional, J(f, λ0;X,Y ) = infu+v=f { ‖u‖X + λ0‖v‖pY } . Such minimizers are standard tools for image manipulations (e.g., denoising, ...

متن کامل

Multiscale Decompositions and Optimization

In this thesis, the following type Tikhonov regularization problem will be systematically studied: (ut, vt) := argmin u+v=f {‖v‖X + t‖u‖Y }, where Y is a smooth space such as a BV space or a Sobolev space and X is the space in which we measure distortion. Examples of the above problem occur in denoising in image processing, in numerically treating inverse problems, and in the sparse recovery pr...

متن کامل

Multiscale Image Representation and Texture Extraction Using Hierarchical Variational Decomposition

In order to achieve a mutiscale representation and texture extraction for textured image, a hierarchical (BV, Gp, L ) decomposition model is proposed in this paper. We firstly introduce the proposed model which is obtained by replacing the fixed scale parameter of the original (BV, Gp, L 2 ) decomposition with a varying sequence. And then, the existence and convergence of the hierarchical decom...

متن کامل

Multiscale deformable registration of noisy medical images.

Multiscale image registration techniques are presented for the registration of medical images using deformable registration models. The techniques are particularly effective for registration problems in which one or both of the images to be registered contains significant levels of noise. A brief overview of existing deformable registration techniques is presented, and experiments using B-splin...

متن کامل

A Multiscale Image Representation Using Hierarchical (bv, L) Decompositions

We propose a new multiscale image decomposition which offers a hierarchical, adaptive representation for the different features in general images. The starting point is a variational decomposition of an image, f = u0 + v0, where [u0, v0] is the minimizer of a Jfunctional, J(f, λ0;X,Y ) = infu+v=f { ‖u‖X + λ0‖v‖pY } . Such minimizers are standard tools for image manipulations — denoising, deblur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014